miércoles, 5 de noviembre de 2008

EL ADN Y EL ARN


A D N
Pruebas de ADN, utilización de restos orgánicos para identificar el ácido desoxirribonucleico (ADN) de una persona. Se ha realizado un buen número de pruebas científicas que prueban que el ADN es la base de la herencia, entre las que se pueden destacar: a) en el proceso normal de reproducción celular, los cromosomas (estructuras con ADN) se duplican para proporcionar a los núcleos hijos los mismos genes que la célula madre; b) las mutaciones provocadas se producen por una alteración de la estructura del ADN que tienen como efecto una grave alteración de la descendencia de las células afectadas; c) el ADN extraído de un virus basta por sí mismo para reproducir el virus entero, por lo que parece claro que, en la esfera jurídica y a efectos legales, tiene toda la información genética para ello. Por todo ello, el ADN puede llegar a ser muy útil en Derecho, no sólo para identificar a una persona gracias a los restos orgánicos encontrados donde se haya cometido un crimen (en especial en delitos contra la libertad sexual o en los que se ha ejercido violencia), sino también para determinar la filiación biológica de una persona.
Ácido desoxirribonucleico (ADN), material genético de todos los organismos celulares y casi todos los virus. El ADN lleva la información necesaria para dirigir la síntesis de proteínas y la replicación. Se llama síntesis de proteínas a la producción de las proteínas que necesita la célula o el virus para realizar sus actividades y desarrollarse. La replicación es el conjunto de reacciones por medio de las cuales el ADN se copia a sí mismo cada vez que una célula o un virus se reproduce y transmite a la descendencia la información que contiene. En casi todos los organismos celulares el ADN está organizado en forma de cromosomas, situados en el núcleo de la célula.
ESTRUCTURA
Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Estas cadenas forman una especie de escalera retorcida que se llama doble hélice. Cada nucleótido está formado por tres unidades: una molécula de azúcar llamada desoxirribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina (abreviada como A), guanina (G), timina (T) y citosina (C). La molécula de desoxirribosa ocupa el centro del nucleótido y está flanqueada por un grupo fosfato a un lado y una base al otro. El grupo fosfato está a su vez unido a la desoxirribosa del nucleótido adyacente de la cadena. Estas subunidades enlazadas desoxirribosa-fosfato forman los lados de la escalera; las bases están enfrentadas por parejas, mirando hacia el interior, y forman los travesaños.
Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno.
En 1953, el bioquímico estadounidense James Watson y el biofísico británico Francis Crick publicaron la primera descripción de la estructura del ADN. Su modelo adquirió tal importancia para comprender la síntesis proteica, la replicación del ADN y las mutaciones, que los científicos obtuvieron en 1962 el Premio Nobel de Medicina por su trabajo.
SÍNTESIS PROTEICA
El ADN incorpora las instrucciones de producción de proteínas. Una proteína es un compuesto formado por moléculas pequeñas llamadas aminoácidos, que determinan su estructura y función. La secuencia de aminoácidos está a su vez determinada por la secuencia de bases de los nucleótidos del ADN. Cada secuencia de tres bases, llamada triplete, constituye una palabra del código genético o codón, que especifica un aminoácido determinado. Así, el triplete GAC (guanina, adenina, citosina) es el codón correspondiente al aminoácido leucina, mientras que el CAG (citosina, adenina, guanina) corresponde al aminoácido valina. Por tanto, una proteína formada por 100 aminoácidos queda codificada por un segmento de 300 nucleótidos de ADN. De las dos cadenas de polinucleótidos que forman una molécula de ADN, sólo una, llamada paralela, contiene la información necesaria para la producción de una secuencia de aminoácidos determinada. La otra, llamada antiparalela, ayuda a la replicación.
La síntesis proteica comienza con la separación de la molécula de ADN en sus dos hebras. En un proceso llamado transcripción, una parte de la hebra paralela actúa como plantilla para formar una nueva cadena que se llama ARN mensajero o ARNm (véase Ácido ribonucleico). El ARNm sale del núcleo celular y se acopla a los ribosomas, unas estructuras celulares especializadas que actúan como centro de síntesis de proteínas. Los aminoácidos son transportados hasta los ribosomas por otro tipo de ARN llamado de transferencia (ARNt). Se inicia un fenómeno llamado traducción que consiste en el enlace de los aminoácidos en una secuencia determinada por el ARNm para formar una molécula de proteína.
Un gen es una secuencia de nucleótidos de ADN que especifica el orden de aminoácidos de una proteína por medio de una molécula intermediaria de ARNm. La sustitución de un nucleótido de ADN por otro que contiene una base distinta hace que todas las células o virus descendientes contengan esa misma secuencia de bases alterada. Como resultado de la sustitución, también puede cambiar la secuencia de aminoácidos de la proteína resultante. Esta alteración de una molécula de ADN se llama mutación. Casi todas las mutaciones son resultado de errores durante el proceso de replicación. La exposición de una célula o un virus a las radiaciones o a determinados compuestos químicos aumenta la probabilidad de sufrir mutaciones.
REPLICACIÓN
En casi todos los organismos celulares, la replicación de las moléculas de ADN tiene lugar en el núcleo, justo antes de la división celular. Empieza con la separación de las dos cadenas de polinucleótidos, cada una de las cuales actúa a continuación como plantilla para el montaje de una nueva cadena complementaria. A medida que la cadena original se abre, cada uno de los nucleótidos de las dos cadenas resultantes atrae a otro nucleótido complementario previamente formado por la célula. Los nucleótidos se unen entre sí mediante enlaces de hidrógeno para formar los travesaños de una nueva molécula de ADN. A medida que los nucleótidos complementarios van encajando en su lugar, una enzima llamada ADN polimerasa los une enlazando el grupo fosfato de uno con la molécula de azúcar del siguiente, para así construir la hebra lateral de la nueva molécula de ADN. Este proceso continúa hasta que se ha formado una nueva cadena de polinucleótidos a lo largo de la antigua; se reconstruye así un nueva molécula con estructura de doble hélice.
HERRAMIENTAS Y TÉCNICAS PARA EL ESTUDIO DEL ADN
Existen numerosas técnicas y procedimientos que emplean los científicos para estudiar el ADN. Una de estas herramientas utiliza un grupo de enzimas especializadas, denominadas enzimas de restricción, que fueron encontradas en bacterias y que se usan como tijeras moleculares para cortar los enlaces fosfato de la molécula de ADN en secuencias específicas. Las cadenas de ADN que han sido cortadas con estas enzimas presentan extremos de cadena sencilla, que pueden unirse a otros fragmentos de ADN que presentan extremos del mismo tipo. Los científicos utilizan este tipo de enzimas para llevar a cabo la tecnología del ADN recombinante o ingeniería genética. Esto implica la eliminación de genes específicos de un organismo y su sustitución por genes de otro organismo.
Otra herramienta muy útil para trabajar con ADN es un procedimiento llamado reacción en cadena de la polimerasa (RCP), también conocida como PCR por su traducción directa del inglés (polymerase chain reaction). Esta técnica utiliza una enzima denominada ADN polimerasa que copia cadenas de ADN en un proceso que simula la forma en la que el ADN se replica de modo natural en la célula. Este proceso, que ha revolucionado todos los campos de la biología, permite a los científicos obtener gran número de copias a partir de un segmento determinado de ADN.
La tecnología denominada huella de ADN (DNA fingerprinting) permite comparar muestras de ADN de diversos orígenes, de manera análoga a la comparación de huellas dactilares. En esta técnica los investigadores utilizan también las enzimas de restricción para romper una molécula de ADN en pequeños fragmentos que separan en un gel al que someten a una corriente eléctrica (electroforesis); de esta manera, los fragmentos se ordenan en función de su tamaño, ya que los más pequeños migran más rápidamente que los de mayor tamaño. Se puede obtener así un patrón de bandas o huella característica de cada organismo. Se utiliza una sonda (fragmento de ADN marcado) que hibride (se una específicamente) con algunos de los fragmentos obtenidos y, tras una exposición a una película de rayos X, se obtiene una huella de ADN, es decir, un patrón de bandas negras característico para cada tipo de ADN.
Un procedimiento denominado secuenciación de ADN permite determinar el orden preciso de bases nucleótidas (secuencia) de un fragmento de ADN. La mayoría de los tipos de secuenciación de ADN se basan en una técnica denominada extensión de oligonucleótido (primer extension) desarrollada por el biólogo molecular británico Frederick Sanger. En esta técnica se lleva a cabo una replicación de fragmentos específicos de ADN, de tal modo que el extremo del fragmento presenta una forma fluorescente de una de las cuatro bases nucleótidas. Los modernos secuenciadores de ADN parten de la idea del biólogo molecular estadounidense Leroy Hood, incorporando ordenadores y láser en el proceso.
Los científicos ya han completado la secuenciación del material genético de varios microorganismos incluyendo la bacteria Escherichia coli. En 1998 se llevó a cabo el reto de la secuenciación del genoma de un organismo pluricelular, un gusano nematodo conocido como Caenorhabditis elegans. En el año 2000 se descifró el material genético de la mosca del vinagre (Drosophila melanogaster) y de la planta Arabidopsis thaliana, entre otros organismos. Pero el acontecimiento más importante, dentro de este grupo de investigaciones, fue el desciframiento del genoma humano llevado a cabo en febrero de 2001, de manera independiente, por el consorcio público internacional Proyecto Genoma Humano y la empresa privada Celera Genomics.
APLICACIONES
La investigación sobre el ADN tiene un impacto significativo, especialmente en el ámbito de la medicina. A través de la tecnología del ADN recombinante los científicos pueden modificar microorganismos que llegan a convertir en auténticas fábricas para producir grandes cantidades de sustancias útiles. Por ejemplo, esta técnica se ha empleado para producir insulina (necesaria para los enfermos de diabetes) o interferón (muy útil en el tratamiento del cáncer). Los estudios sobre el ADN humano también revelan la existencia de genes asociados con enfermedades específicas como la fibrosis quística y determinados tipos de cáncer. Esta información puede ser valiosa para el diagnóstico preventivo de varios tipos de enfermedades.
La medicina forense utiliza técnicas desarrolladas en el curso de la investigación sobre el ADN para identificar delincuentes. Las muestras de ADN tomadas de semen, piel o sangre en el escenario del crimen se comparan con el ADN del sospechoso; el resultado es una prueba que puede utilizarse ante los tribunales. Véase Pruebas de ADN.
El estudio del ADN también ayuda a los taxónomos a establecer las relaciones evolutivas entre animales, plantas y otras formas de vida, ya que las especies más cercanas filogenéticamente presentan moléculas de ADN más semejantes entre sí que cuando se comparan con especies más distantes evolutivamente. Por ejemplo, los buitres americanos están más emparentados con las cigüeñas que con los buitres europeos, asiáticos o africanos, a pesar de que morfológicamente y etológicamente son más similares a estos últimos.
La agricultura y la ganadería se valen ahora de técnicas de manipulación de ADN conocidas como ingeniería genética y biotecnología. Las estirpes de plantas cultivadas a las que se han transferido genes pueden rendir cosechas mayores o ser más resistentes a los insectos. También los animales se han sometido a intervenciones de este tipo para obtener razas con mayor producción de leche o de carne o razas de cerdo más ricas en carne y con menos grasa.


A C I D O R I B O N U C L E I C O (A R N)
Material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
A R N C E L U L A R
En organismos celulares, el ARN es una cadena de polinucleótidos de una sola hebra, es decir, una serie de nucleótidos enlazados. Hay tres tipos de ARN: el ARN ribosómico (ARNr) se encuentra en los ribosomas celulares (estructuras especializadas situadas en los puntos de síntesis de proteínas); el ARN de transferencia (ARNt) lleva aminoácidos a los ribosomas para incorporarlos a las proteínas; el ARN mensajero (ARNm) lleva una copia del código genético obtenida a partir de la secuencia de bases del ADN celular. Esta copia especifica la secuencia de aminoácidos de las proteínas. Los tres tipos de ARN se forman a medida que son necesarios, utilizando como plantilla secciones determinadas del ADN celular.
A R N V Í R I C O
Algunos virus tienen ARN de cadena doble, formado por dos cadenas de polinucleótidos complementarios. En estos virus, la replicación del ARN en la célula hospedante sigue la misma pauta que la replicación del ADN. Cada nueva molécula de ARN tiene una cadena de polinucleótidos procedente de otra anterior. Cada una de las bases de los nucleótidos de la cadena se acopla con una base complementaria de otro nucleótido de ARN: adenina con uracilo y guanina con citosina. Hay dos tipos de virus con ARN de cadena única. Uno de ellos, el poliovirus, virus causante de la poliomielitis humana (véase Enterovirus), penetra en la célula hospedante y sintetiza una cadena de ARN complementaria para transformar la molécula sencilla en doble. Durante la replicación las dos hebras se separan, pero sólo la formada recientemente atrae nucleótidos con bases complementarias. Por tanto, la cadena de polinucleótidos formada como resultado de la replicación es exactamente igual a la original.
El otro tipo, que agrupa los llamados retrovirus, comprende el virus de la inmunodeficiencia humana (VIH), que causa el SIDA, y otros virus causantes de tumores. Después de entrar en la célula hospedante, el retrovirus forma una cadena de ADN complementaria de su propio ARN valiéndose de los nucleótidos de la célula. Esta nueva cadena de ADN se replica y forma una doble hélice que se incorpora a los cromosomas de la célula hospedante, donde a su vez se replica junto con el ADN celular. Mientras se encuentra en la célula hospedante, el ADN vírico sintetizado a partir del ARN produce virus ARN de cadena única que abandonan la célula e invaden otras.
I N V E S T I G A C I Ó N
Varias pruebas sugieren que el ARN fue el primer material genético. El equivalente a la molécula genética más arcaica sería probablemente de estructura sencilla y debería ser capaz de tener actividad enzimática. Además, la molécula debería encontrarse en todos los organismos. La enzima ribonucleasa-P, que se encuentra en todos los organismos, está formada por proteína y una forma de ARN con actividad enzimática. Basándose en esta prueba, algunos científicos opinan que la porción ARN de la ribonucleasa-P sería el equivalente moderno de la más antigua molécula genética.

arn

adn

genetica y herencia


la genetica Es la ciencia que estudia la herencia.
Herencia son las características que se transmiten de padres a hijos. Las características se transmiten por medio de los genes. Cada característica es transmitida por un par de genes.
A los gene que transmiten una misma característica se les llama alelos. Los genes pueden ser dominantes o recesivos.
Genotipo son las características que no se ven pero se tiene la información genética para ellos.
Fenotipo son las características que podemos ver en el individuo.
Una especie puede ser pura cuando los alelos son iguales.
Una especie es híbrida cuando los alelos son diferentes, puede ser homosigotica cuando son iguales y hetrosigotica cuando son diferentes.
Los descendientes se conocen con el nombre de progenie.




LEYES DE MENDEL.
Ley o Ley de Uniformidad.
Cuando se cruzan 2 líneas puras todos los descendientes son iguales.
2ª Ley de la segregación independiente.
Los factores hereditarios no se fusionan sino que se separan durante la formación de los gametos y vuelven a unirse en la fecundación.
3ª Ley o Ley de la Distribución independiente.
Cuando en un híbrido se combinan varios genes o caracteres, estos se transmiten independientemente.
Cromosomas y su importancia.
Los cromosomas son estructuras filamentosas constituidas por cromatina, localizados en el núcleo de la célula, solamente se observan durante la división celular.
El número de cromosomas varia para cada especie. El ser humano tiene 46 cromosomas agrupado en pares.
Las células procariontes solamente tiene un cromosoma en el citoplasma.
Cariotipo.
Es el conjunto de cromosomas de una especie. Cariograma es la representación del cariotipo. Los cromosomas se organizan en grupos designados por letras y tamaño.
Las células eucariontes poseen 2 tipos de cromosomas.
Ocurren en herencia simple: una característica por 1 gen.
Ley de la dominancia.
Cuando se cruzan 2 progenitores de raza pura con la característica que se sigue contrastante toda la 1ª filial muestra el carácter dominante.




Ley de la segregación.
Las características genéticas se segregan, separan, nunca se mezclan.





Ley de la independencia.
Las características genéticas se transmiten independientes. Solo con zea no resultó.



Las Ideas sobre la herencia antes de Mendel
Los seres vivos originan seres semejantes a ellos, les transmiten sus características.
La genética es la rama de la biología que estudia cómo los progenitores transmiten sus características a sus descendientes.
Los conocimientos sobre la genética se desarrollaron en este siglo. Aún hay gran cantidad de incógnitas debido a que los científicos no las han resuelto todavía.
Desde tiempos remotos el hombre ha cultivado y criado especies con las cuales ha tratado a que estén mejor adaptadas a las necesidades humanas. Por ejemplo. los perros, si se quería tener perros pequeños, se cruzaban entre sí a los perros más pequeños; si se deseaba tener perros lanudos, se cruzaban entre sí los más lanudos.
La Hibridación.
Un híbrido es el descendiente de dos padres que difieren en uno o más rasgos heredables. Sus padres pueden pertenecer a variedades o especies distintas; por ejemplo: la mula resulta de cruzar un asno o burro con una yegua o un caballo con una burra. Si se cruza un toro Brahman con una vaca Shorthorn, se obtiene la raza conocida como Santa Gertrudis.
En 1840, Albert Von Kolliker propuso que el óvulo y el espermatozoide eran células. En 1879, Hermann Folobs, la fecundaciónde un óvulo de estrella de mar por un espermatozoide, así se concluyó que la unión de dos gametos uno femenino y otro masculino se originaba de un descendimiento y que ese mismo proceso debía de ocurrir tanto en animales como en plantas de reproducción sexual.
El estudio de la transmisión de las características hereditarias permitía entender porque al nacer niñas o niños o porque se transmiten características no deseadas como enfermedades hereditarias o alteraciones genéticas.
Los cromosomas sexuales constituyen el par 23 en la mujer se denominan por XX mientras en el hombre producen dos tipos XY.
Los cromosomas X y Y determinan el sexo del ser humano.
Los seres humanos, varones y mujeres, heredan a sus descendientes características propias del ser humano, les heredan, por ejemplo, la capacidad de razonamiento, postura y el bipedalismo.
No obstante que por lo general los descendientes heredan de sus padres caracteres deseables también heredan no deseables.
Los trabajos de Mendel.-
John Gregory Mendel (1822-1884) Monje Austriaco que empezó a experimentar a mediados del siglo pasado con el chícharo de jardín Pisom Santiuum y reunió sus resultados durante ocho años, los cuales resumió en tres grandes leyes conocidas como Leyes Mendelianas o de Mendel, publicó sus trabajos en 1866 y en 1869, pero pasó inadvertido. Fue hasta 1900 cuando Carl Correans de Alemania, Hugo de Urres de Holanda y Erik Von Tserchimark de Austria descubren su importancia pero Mendel no vive para verlo pues muere en 1884.
Mendel escogió a los chícharos por las siguientes razones:
Son hermafroditas, por lo tanto pueden autofecundarse.
Su reproducción es muy rápida y por lo mismo las generaciones de padres a hijos se dan en corto tiempo.
Se pueden obtener características contrastantes y bien definidas.
Las Leyes de Mendel.-
Primera Ley de Mendel o Principio de Ley de la Dominancia.- Esta Ley menciona que para cada característica hereditaria existen genes dominantes y recesivos. Sin importar cual padre contribuye con el carácter dominante el híbrido o heterocigoto siempre tendrá fenotipo dominante.
Segunda Ley de Mendel o Principio de la Segregación de Caracteres.Un carácter hereditario se transmite como una unidad que no se combina, se diluye o se pierde al pasar de una generación a otra, sólo se segrega o se separa.
Tercera Ley de Mendel o de Distribución Independiente. Anuncia que un par de alelos se distribuye en forma independiente de otro par de alelos. Los caracteres se heredan de manera independiente unos de otros.
Mendel publicó sus trabajos en 1866, pero ningún científico importante de su tiempo lo conoció, fue hasta 1900 cuando Hugo de Uries, Carl Curres y Erick Schermat descubrieron, trabajando sobre dos procesos de la herencia que Mendel ya los había descubierto.
En 1901 William Sutton encontró que los genes se encuentran en los cromosomas. Los cromosomas son pequeños cuerpos que se encuentran en las células, en su núcleo, en ellos se encuentran los genes.
La cantidad de cromosomas varían según la especie. En las células humanas hay dos tipos de cromosomas, a saber, los autosomas y los heterocromosomas. Los autosomas transmiten las características, los heterocromosomas o cromosomas sexuales determinan el sexo, forman el par 23.
El varón tiene 22 pares de autosomas y un par de cromosomas sexuales formados por uno X y otro Y. La mujer tiene 22 pares de autosomas y un par de cromosomas sexuales formado por los cromosomas XX.
El carotipo.
Consiste en encontrar por medio de la observación en el microscopio, la cantidad de pares de cromosomas que los constituyen.
El hombre ha conseguido un avance increíble en los conocimientos de proceso de la herencia.
Los Genes. Después de que se conoció la estructura del ADN, se continuó investigando qué relación habría entre él y los genes. Ahora se sabe que un gen sólo es una pequeña fracción de cadena del ADN.
Cromosomas.- Estructuras filamentosas constituidas por cromatina (complejo y estructura formada por ácidos nucléicos como ADN, ARN y algunas proteínas que contienen la información genética en una secuencia lineal). Se encuentran en los núcleos de las células; existen dos tipos importantes de cromosomas autosomas o células somáticas, que son aquellas que ayudan a la formación de todos los tejidos, órganos, aparatos, así como la morfología de los seres vivos, en el caso del ser humanos son 22 pares o 44 heterocromosomas (cromosomas sexuales). Estos cromosomas determinan el sexo en los seres vivos.
Las Mutaciones. Mutación es un cambio en el material genético de los organismos, entre los genes o en los cromosomas.
Continuamente ocurren cambios en las características hereditarias de los organismos, es decir, en los genes La mayor parte de las mutaciones es dañina para el organismo, en el cual suceden, por lo general, un individuo cambio tanto que no se adapta a su medio y muere. Solo algunas mutaciones son ventajosas.
Las bacterias ejemplifican la importancia de que un organismo se adapte.
Las mutaciones son cambios en uno o varios genes de los cromosomas. Existen muchos factores que pueden causar los cambios en los genes, estos factores se llaman agentes mutagénicos, algunos de ellos son los Rayos X.
Cuando una mutación sucede en las células germinales hay cambios en el individuo que se formará, pero si ocurre en las células somáticas pueden causar cáncer.
La Manipulación de la Herencia.
Watson y Crick descubrieron que la molécula del ADN está formada por una célula doble. Un grupo de investigadores de los países más avanzados trata de establecer como es el genoma humano. La investigación consiste en establecer cuáles son las características de los cromosomas del ser humano y cuántos genes constituyen a cada cromosoma.
La
ingeniería genética es considerada creación de métodos para el manejo de genes en microorganismos, plantas y animales, incluido el hombre.

la sexualidad

Sexualidad.
La sexualidad es una manera de comportarnos, de sentir, de hacer y tiene que ver con factores biológicos, psicológicos y sociales. En la sexualidad tenemos que analizar la sociedad, la familia o el grupo humano que rodea a la persona “x” que estamos hablando, por otro lado tenemos que pensar “¿Quién es esa persona?” desde el punto de vista psicológico, también se debe ver desde el punto de vista biológico por que no es lo mismo hablar de sexualidad masculina que hablar de sexualidad femenina.Cuando se llega a agrupar esos tres conceptos, es decir el social, el psicológico y el biológico, se puede hablar de sexualidad. La sexualidad tiene funciones especificas en el ser humano y la principal es el placer y la otra es la cercanía con el otro; esto es de manera primordial, porque la función secundaria de la sexualidad en el ser humano es la reproducción.¿Cómo se manifiesta la sexualidad?La sexualidad se manifiesta de muchas maneras. Desde cómo se considere uno, masculino o femenino, cuál es la identidad que se tiene como genero o sexual. También se manifiesta con un actividad que es explícitamente sexual, juegos sexuales , etc. ¿Desde que edad?La sexualidad se manifiesta desde etapas tempranas. Hace tiempo apareció una teoría psicoanalítica que señalaba que el niño tenía sexualidad. También se pensaba que la sexualidad aparecía con el desarrollo de las características sexuales secundarias, es decir cuando en la adolescencia se desarrollan biológicamente los cuerpos del hombre y la mujer.
La palabra sexo tiene dos cognotaciones. Una es el sexo de genero, la diferenciación biológica entre el hombre y la mujer, de cómo está compuesto cada uno de sus cuerpos. La otra es la actividad sexual explícita, el contacto genital coital.Este término tiene que ver con sexualidad pero no es sexualidad.
La sexualidad no se termina nunca. Muere con uno. Se piensa que la sexualidad es una cosa como de jóvenes, pero la sexualidad tiene cambios a lo largo del ciclo vital del ser humano. En todas las etapas del ciclo humano las manifestaciones de la sexualidad son distintas. En la infancia las manifestaciones son de curiosidad, de masturbación que se da con mucha frecuencia y puede a llegar a ser normal. En la adolescencia se da la posibilidad de empezar una actividad sexual con el otro o se sigue con la masturbación. En la edad adulta la sexualidad se pega más al hecho de conformación de una pareja, claro que buscando siempre el placer, y la búsqueda de la reproducción como respuesta del ser humano de prolongarse, de alguna manera, en la tierra. Finalmente, en el anciano, si bien todas las funciones del cuerpo sufren cambios y empiezan a declinar, eso no quiere decir que la actividad sexual desaparezca. Lo que ocurre es que la respuesta corporal a estímulos sexuales es más demorada y la capacidad de recuperación es muy lenta comparada con la juventud.Hay estudios que señalan que en personas que han tenido una actividad sexual frecuente y satisfactoria, la posibilidad de prolongar su actividad sexual cuando sea anciano es mayor que en casos contrarios.
Es necesario diferenciar entre identidad sexual, que es reconocerse como hombre o como mujer, y otra es la orientación sexual, que es elegir con quien se va a tener relaciones erotico-afectivas o relaciones de pareja, con personas del sexo contrario (heterosexuales), con personas del mismo sexo (homosexuales) o tanto con unos como con otros (bisexuales).Los homosexuales y los bisexuales son minorías sexuales pero eso no quiere decir que sea patológico, ni desde el punto de vista psicológico o biológico.
Trastorno de identidad de Género que se presenta cuando la persona nace de un genero y se cree del otro; su tratamiento no es tratar que reconozca el género de su cuerpo, sino tratar que esa persona viva lo mejor posible en esa condición. Parafilias o Aberraciones también son patológicas y si se puede debe tratarse. Disfunciones sexuales son las patologías más frecuentes y son las alteraciones corporales a los llamados sexuales. Estas también se deben tratar. En la población existe temor a consultar estos temas por que no se ha establecido una confianza grande médico-paciente y se dejan llevar por mitos y cuentos que no tienen sustento. Se debe consultar cualquier queja sexual al médico para saber si tiene una patología. Las Disfunciones Sexuales tienen tratamiento sencillo y de buenos resultados, por eso sería lamentable que una persona que sufra de alguna no se tratara.
Las patologías son enfermedades que sufren algunas personas y por ello no son aprendidas. Tampoco se tiene demostración genética que sean heredadas. Las orientaciones son decisiones que toma cada individuo para su actividad sexual, tampoco hay evidencia genética en esta decisión.
Trastorno de Identidad de Género: se da más en hombres que en mujeres, son personas que desde niños creyeron ser mujeres y se crearon fantasías soñando que su cuerpo se volvería femenino con el transcurso del tiempo. En otras palabras no hay correspondencia entre el sexo biológico y la identidad sexual. Las razones que producen este trastorno son psicosociales como la conformación de la familia, etc.-Parafilias: se da cuando se escoge como compañeros sexuales no personas sino otro tipo de objetos por ejemplo, ropa, cadáveres, animales. En algunos casos optan por practicar relaciones sexuales observando y siendo observados, experiencia que les produce excitación sexual. De aquí se deriva la zoofilia, la necrofilia, el boyerismo, el excibisionismo, etc. La dificultad de las Parafilias es que son consideradas como delitos, y el sufrir de Parafilias no los excimen de la responsabilidad legal.-Disfunciones Sexuales: son dificultades en el comportamiento de las fases sexuales, que son las fases del deseo, la excitación y la del orgasmo. Estas disfunciones pueden ser producto de algún problema orgánico o ser psicógenas.
Un método anticonceptivo es una metodología que impide o reduce la posibilidad de que ocurra la fecundación o el embarazo al mantener relaciones sexuales. Por lo general implica acciones, dispositivos o medicamentos en las que cada uno tiene su nivel de efectividad. También se le llama contracepción o anticoncepción, en el sentido de ser formas de control de la natalidad.



Tipos de métodos anticonceptivos



Métodos de barrera



Preservativo. Tiene una versión femenina y una masculina
Diafragma. Una variedad más pequeña de éste es el capuchón cervical.
LeaContraceptivum. Un tamaño, él permanece en lugar debido a la succión.
Los métodos de barrera impiden la entrada de esperma al útero.
Los condones masculinos son recubrimientos delgados de caucho, vinilo o productos naturales que se colocan sobre el pene erecto. Los condones masculinos pueden ser tratados con espermicida para ofrecer mayor protección. Los condones masculinos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro (sólo los condones de látex y vinilo.)
Los condones femeninos son un recubrimiento delgado de plástico poliuretano con aros de poliuretano en extremos opuestos. Estos se introducen en la vagina antes del coito. Al igual que los condones masculinos, los condones femeninos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro

Métodos químicos y hormonales


Espermicidas. Los espermicidas son productos químicos (por lo general, nonoxinol-9) que desactivan o matan a los espermatozoides. Están disponibles en aerosoles (espumas), cremas, tabletas vaginales, supositorios o películas vaginales disolubles. Los espermicidas causan la ruptura de las membranas de los espermatozoides, lo cual disminuye su movimiento (motilidad y movilidad), así como su capacidad de fecundar el óvulo.
La
anticoncepción hormonal se puede aplicar de diversas formas.
Vía oral, por la
píldora anticonceptiva
Anticonceptivo subdérmico Implante compuesto por una varilla del tamaño de un cerillo que se coloca por debajo de la piel del brazo de la mujer, ofreciendo protección anticonceptiva por tres años sin ser definitivo, el médico que ha recibido capacitación puede retirarlo en cualquier momento retornando la mujer en un tiempo mínimo a la fertilidad.
Anillo vaginal Único de administración vaginal mensual. Es el método más innovador en anticoncepción femenina: un anillo transparente, suave y flexible que se coloca por la misma usuaria por vía vaginal liberando diariamente las dosis más bajas de hormonas.
Píldora trifásica Método anticonceptivo altamente eficaz de dosis hormonales bajas con un balance hormonal suave y escalonado que imita al ciclo fisiológico de la mujer en forma secuencial progresiva etapa reproductiva brindando estricto control del ciclo, además reduce la grasa facial. También puede ser indicado para el tratamiento de acné leve a moderado.
Píldora 0 estrógenos. Píldora anticonceptiva libre de estrógenos, recomendada para mujeres que no pueden o no desean tomarlos; la dosis hormonal es tan ligera que entre otras indicaciones es la única píldora recetada durante la lactancia.
Píldora del día después Método hormonal de uso ocasional. La anticoncepción de emergencia, se trata de la administración de un producto hormonal no abortivo que evita la ovulación y de esta forma previene el embarazo en aquellas mujeres que tuvieron relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección, incluyendo los casos de violación.
Aunque este tratamiento se conoce también como "la píldora del día siguiente", el término puede ser engañoso pues debe utilizarse inmediatamente después de tener relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección; puede tomarse en un periodo de hasta 72 horas, sin embargo la sugerencia es que la mujer tome 2 píldoras en una sola toma inmediatamente.sin embargo la sugerencia es que la mujer tome 2 píldoras en una sola toma inmediatamente.



Método combinado



Considerado por muchos como el método anticonceptivo por excelencia, debido a su alta efectividad (similar a la píldora) y a que no posee muchos de los cuestionamientos religiosos de la píldora. Consiste en combinar el uso de preservativo masculino con una crema espermaticida. La crema se coloca con un aplicador especial que viene con el envase y el hombre utiliza el preservativo de la manera habitual. Tiene la ventaja agregada de lubricar el canal vaginal y así facilitar la penetración.

Dispositivo intrauterino (DIU)


Es un método que, mediante la colocación en el interior del útero de un dispositivo plástico con elementos metálicos (ej. cobre), se produce una alteración del microclima intrauterino que dificulta de gran manera la fecundación y también la implantación del óvulo fecundado.

Métodos naturales


Los métodos naturales de conocimiento de la fertilidad, se basan en la observación de síntomas asociados a los procesos fisiológicos que dan lugar a la ovulación y a la adaptación del acto sexual a las fases fértiles o infértiles del ciclo menstrual en función de que se desee o no una concepción, sin el uso de fármacos, procedimientos mecánicos ni quirúrgicos. Algunos métodos predictivos son aún enseñados con cierta preferencia en las escuelas ginecológicas, como el método de Ogino-Knauss o método del ciclo, mientras que otras técnicas, tan ancestrales como el Coitus interruptus tienen hoy en día una fiabilidad que es similar a la de otros métodos no quirúrgicos. Otros métodos naturales están basados en la conciencia de la fertilidad, es decir, la mujer observa con atención y registra los signos de fertilidad en su cuerpo para determinar las fases fértiles o infértiles. Los síntomas específicos caen en tres categorías: cambios en temperatura basal, en el moco cervical y la posición cervical. El registrar tanto la temperatura basal como otro signo primario, se conoce como el método sintotermal. Otras metodologías incluyen el monitoreo de los niveles en orina de estrógeno y LH a lo largo del ciclo menstrual.
Son métodos que, para que puedan ser utilizados como métodos seguros de control de la fertilidad, requieren cierto grado de disciplina en la autoobservación/anotación y un correcto aprendizaje con materiales y personal bien preparado. Una crítica a estos métodos es la de que no previenen el
SIDA o cualquier otra enfermedad de transmisión sexual, ya que al igual que la píldora anticonceptiva, el anillo vaginal y otros métodos no naturales, que implican contacto físico directo, no se protegen de dichas enfermedades.
De los métodos naturales no son recomendables el método Ogino/Knauss ni el coitus interruptus por falta de eficacia. En cuanto a los métodos modernos, el más eficaz es el sintotérmico con doble control, significativamente superior en eficacia sobre el Método de la Ovulación.

Métodos simples



Temperatura basal: El método de la temperatura basal se sirve del aumento que la progesterona induce en la temperatura corporal interna de la mujer durante la ovulación y determina, una vez diagnosticada, infertilidad postovulatoria. Para ello la mujer deberá determinar la temperatura corporal interna a lo largo del ciclo menstrual. El método de la temperatura basal estricto circunscribe el periodo de infertilidad a los días posteriores a la subida de temperatura exclusivamente. El método de la temperatura basal extendido define, cumplidas ciertas condiciones, 6 días de infertilidad preovulatoria. El método de la temperatura basal es altamente fiable en el periodo postovulatorio, y supone la base de la mayoría de los métodos naturales modernos. Sin embargo tiene limitaciones a la hora de determinar la infertilidad preovulatoria.
Método de la ovulación (método Billings y otros): El método de la ovulación se basa en la observación diaria de los cambios del moco cervical a lo largo del ciclo femenino, cambios que se asocian a los aumentos en los niveles de estrógenos previos al momento de la ovulación. Normalmente, las fases de infertilidad de la mujer se caracterizan por una ausencia de moco cervical visible y una sensación de sequedad vaginal. Conforme se acerca el momento de la ovulación el moco cervical se hace a lo largo de varios días y de forma progresiva, cada vez más líquido, elástico y transparente. Próximo al momento de la ovulación se produce el llamado pico de moco caracterizado por un cambio abrupto de las propiedades el moco y su posible desaparición. El moco cervical es un signo de fertilidad y por ello su observación puede ser utilizado para el control de la fertilidad. La confiabilidad es superior al 95% en varios países estudiados. Aunque, aplicado correctamente, puede ser considerado un método seguro, es inferior al método de la temperatura en fase postovulatoria. Su utilización es especialmente apto para la consecución del embarazo en casos de hipofertilidad ya que permite concentrar las relaciones sexuales en torno al momento de mayores probabilidades de embarazo. Como método anticonceptivo es especialmente inseguro en mujeres con ciclos monofásicos (durante la menarquia o antes de la menopausia).

Métodos compuestos



Método sintotérmico: Combina el método de la temperatura basal, para el diagnóstico de la infertilidad postovulatoria, en combinación con otra serie de síntomas (moco cervical, cuello del útero, entre otros) y cálculos de longitud de ciclos para la determinación de la infertilidad preovulatoria. Permite beneficiarse de la práctica infalibilidad de la temperatura basal a la hora de determinar la infertilidad postovulatoria y aumentar considerablemente la eficacia en periodo preovulatorio. Su eficacia es equivalente a las modernas preparaciones de anovulatorios orales y solamente inferior a la esterilización quirúrgica. Una ventaja adicional es que es un método válido e igualmente eficaz en todas las circunstancias de la vida reproductiva de la mujer (período post-parto, período post-píldora, premenopausia, etc).

Métodos anticonceptivos definitivos o irreversibles



Son parcialmente irreversibles:
Ligadura de trompas, o salpingoclasia. Consiste en ligar las trompas de Falopio con grapas a fin de impedir que el óvulo se implante en el útero o que los espermatozoides se encuentren con él.
Vasectomía. Es una operación quirúrgica para seccionar los conductos deferentes que transportan a los espermatozoides de los testículos al exterior cuando se eyacula. Una vez realizada, los espermatozoides que a diario se producen son reabsorbidos por el organismo. Puesto que el líquido seminal es elaborado en la próstata, la vasectomía no impide la eyaculación. Es un proceso reversible aunque con dificultades.

Métodos de emergencia



Píldora del día después. Tiene bastantes efectos secundarios.
El
método de Yuzpe tiene una tasa de fallos de hasta el 2% si la mujer lo ha usado en forma correcta, lo cual representa una disminución considerable del riesgo de embarazo, comparado con el no uso de anticoncepción de emergencia. Dependiendo cuando la mujer utilice las píldoras como anticoncepción de emergencia durante el ciclo menstrual, la combinación puede prevenir la ovulación, fertilización o la implantación, se cree que básicamente modifica el revestimiento endometrial impidiendo la implantación. El método de Yuzpe no es abortivo y no es eficaz cuando el proceso de implantación se ha iniciado.
El
aborto no es un método anticonceptivo, porque la concepción ya se ha producido. Además tiene el riesgo de cualquier operación.
De todos estos métodos sólo los preservativos y el femy disminuyen la posibilidad de contraer una
enfermedad venérea. En algún caso el diafragma puede evitar algún tipo de infección, pero no es eficaz como método general de prevención.
Los métodos abortivos como la píldora de
mifepristona producen una reducción relativa del número de abortos en las estadísticas, pues trasladan los "macro-abortos" a "micro-abortos", es decir, a abortos del embrión por implantarse o recién implantado. El concepto de control de natalidad es más amplio pues incluye al aborto e incluso al infanticidio y no debe confundirse ni con el método anticonceptivo ni con el aborto.

miércoles, 29 de octubre de 2008

Anatomia Humana

Algunas ramas o disciplinas como la osteología, la miología, la artrología, la angiología o la neuroanatomía cercan los límites de estudio del cuerpo humano de una manera más particular. Así, la miología realiza el estudio específico de los músculos, sus características y funciones; y la neuroanatomía realiza el estudio del sistema nervioso en forma extensiva.

  • La anatomía sistemática o descriptiva: esquematiza el estudio del cuerpo humano fraccionándolo en las mínimas partes constituyentes, y organizándolas por sistemas y aparatos. La anatomía topográfica o regional: organiza el estudio del cuerpo por regiones siguiendo diversos criterios. La anatomía regional tiende a un arreglo más funcional y práctico, bajo un entendimiento más abarcativo de las relaciones entre las diferentes estructuras componentes. La anatomía de superficie es un área esencial en el estudio, pues los recuadros de anatomía de superficie ofrecen una información visible y táctil sobre las estructuras que se sitúan debajo de la piel.
  • La anatomía clínica: pone énfasis sobre el estudio de la estructura y la función en correlación a situaciones de índole médico-clínica (y otras ciencias de la salud). Aquí importan diferentes áreas como: la anatomía quirúrgica; la anatomía radiológica y ultrasonográfica en relación al diagnóstico por imágenes; la anatomía morfogenética que se relaciona con las enfermedades congénitas del desarrollo; la anatomopatología, etc.
  • La anatomía artística: trata de las cuestiones anatómicas que afectan directamente a la representación artística de la figura humana. Por ejemplo, los músculos que aparecen superficialmente y sus tensiones según las diferentes posturas y/o esfuerzos; las transformaciones anatómicas que se producen en función de la edad, de la "raza", de las enfermedades; las transformaciones anatómicas debidas al gesto y/o las emociones se estudian en una subdivisión de la anatomía humana artística denominada fisiognomía o bien fisiognómica.

Hay otras modalidades: anatomía comparada, anatomía funcional, etc.

El cuerpo humano tiene muchos sistemas y aparatos los cuales son:

Aparato digestivo: procesado de la comida, boca, esófago, estómago, intestinos y glándulas anexas.

Sistema endocrino: comunicación dentro del cuerpo mediante hormonas.

Aparato excretor: eliminación de residuos del cuerpo mediante la orina.Sistema inmunitario: defensa contra agentes causantes de enfermedades.

Sistema integumentario: piel, pelo y uñas.

Sistema muscular: movimiento del cuerpo.

Sistema nervioso: recogida, transferencia y procesado de información, por el cerebro y los nervios, en este interactuan los AINESAparato reproductor: los órganos sexuales.(Masculinos y Femeninos)

Aparato respiratorio: los órganos empleados para la respiración son los pulmones. dentro de los cuales podemos encontrar los Bronquiolos, cilius etc.Sistema óseo: apoyo estructural y protección mediante huesos.Sistema articular: formado por las articulaciones y ligamentos asociados que unen el sistema esquelético y permite los movimientos corporales.

Aparato locomotor: conjunto de los sistemas esquelético, articular y muscular. Estos sistemas coordinados por el sistema nervioso permiten la locomoción.Sistema cardiovascular: formado por el corazón, arterias, venas y capilares

Sistema linfático: formado por los capilares, vasos y ganglios linfáticos, bazo, Timo y Médula Ósea.Sistema circulatorio: conjunto de los sitemas cardiovascular y linfático.

un Sistema: es un grupo de órganos asociados que concurren en una función general y están formados predominantemente por los mismos tipos de tejidos. Por ejemplo: el sistema esquelético, el sistema cardiovascular, el sistema nervioso, etc.

un Aparato: es un grupo de sistemas que desempeñan una función común y más amplia. Por ejemplo el aparato locomotor, integrado por los sistemas muscular, esquelético, articular y nervioso.

martes, 28 de octubre de 2008



estos son los diferentes tipos en los cuales podemos observar la anatomia humana

la anatomia humana